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Abstract

We study conformally flat Lorentzian hypersurfaces in the conformal compactification of Lorentz space Rn+1
1 , which is the

projectivized light cone R̂n+1
1 ⊂ RPn+2 induced from Rn+3

2 . We establish a Lorentzian version of the local classification theorem
of Cartan, in terms of branched channel hypersurfaces for n ≥ 4, and for n = 3, in terms of the conformal fundamental forms. For
hypersurfaces whose shape operator has complex eigenvalues, we give a necessary condition for being conformally flat in terms of
local integrability of distributions.
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1. Introduction

Recent work of U. Hertrich-Jeromin established a new characterization of conformally flat hypersurfaces in
the conformal sphere S4 through the special triple orthogonal system known as Guichard’s net (see [4,5]). That
characterization gave a “demystification” of Cartan’s Theorem, which established that the condition of conformal
flatness was equivalent to the umbilicity of certain distributions [3]. Moreover, for dimensions greater than 3, U.
Hertrich-Jeronim’s work also involved a proof of the classical local characterization of conformally flat hypersurfaces
in Sn+1 given by Cartan, namely: A hypersurface n ≥ 4 in the sphere is conformally flat if and only if it is a (branched)
channel hypersurface. U. Hertrich-Jeromin’s results involved a new method, namely, using the projective model for
Möbius geometry for submanifolds in the Lorentz space Rn+3

1 , where the conformal sphere Sn+1 was identified with
the projectivized light cone in RPn+2.
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Continuing in this line, we start a study of conformally flat hypersurfaces in the Lorentzian setting. This means
considering conformally flat Lorentzian hypersurfaces in the projectivized light cone R̂n+1

1 in RPn+2 induced from
Rn+3

2 . We observe that, in contrast to the positive definite case, where the projectivized light cone is identified

with Sn+1, our projectivized light cone is identified with the compact space Sn
×S1

So , which is called the conformal
compactification of the Lorentz space Rn+1

1 (see Porteous [11]). So, the main goal in this note is to prove a Lorentzian
version of Cartan’s Theorem for dimensions n ≥ 3, in terms of the branched channel Lorentzian hypersurfaces, for
the n ≥ 4-dimensional case, and for dimension n = 3, in terms of the integrability of the conformal fundamental
forms defined for the Lorentzian case. In order to do this we restrict our attention to open sets on which the shape
operators have constant algebraic types and the eigenvalues have constant multiplicities. We assume these conditions
throughout this note.

In order to establish our results, we note that a construction of the foundations of Möbius geometry of Lorentzian
surfaces was made by the second author in ([8]) and the generalized definitions and basic facts for Lorentzian
manifolds with dimension ≥ 2 can be extended naturally.

We recall that a pseudo-Riemannian manifold (M, g) is called conformally flat if, for any x ∈ M , there exists a
neighborhood U of x and a function u : U → R such that (V, e2u g) is flat.

Following Besse in [2], one finds that, as happens in the Riemannian case, any two-dimensional pseudo-
Riemannian manifold is conformally flat. Analogously, for dimensions n ≥ 4 a condition equivalent to conformal
flatness is the vanishing of the Weyl tensor, and for n = 3 the criterion for conformal flatness is that the Schouten
tensor is a Codazzi tensor.

We show in this paper the following result.

Lemma 1.1 (Main Lemma). If the metric of a light cone representative f : Mn
1 → Rn+3

2 of a Lorentzian hypersurface
in the projectivized light cone R̂n+1

1 is flat, then its normal bundle is flat (as an immersion into Rn+3
2 ).

In contrast to the Riemannian case, the shape operator in the Lorentzian case can have four possible forms,
depending on its algebraic type: AS is diagonalized over R, or diagonalized over C (but not R), or it is not
diagonalizable with one eigenvalue of multiplicity 2 in the minimal polynomial corresponding to a null eigenvector,
or with one eigenvalue of multiplicity 3 corresponding to a null eigenvector. (See [10], or [7] for details.) So, in the
proof of Main Lemma 1.1, we use an f -adapted frame for the strip ( f, S) : Mn

1 → Ln+2
1 × Sn+2

2 , where S represents
a spherical congruence in Sn+2

2 enveloped by f , and study the four possible forms of the shape operator AS . We show
that the only case that cannot happen is that of multiplicity 3; for any other, the conditions imply the flatness of normal
bundle in Rn+3

2 .
Moreover, using the ideas from [6], we prove a Lorentzian version of the theorem of Cartan’s local characterization,

namely:

Theorem 1.1. f : Mn
1 → R̂n+1

1 , n ≥ 4, is a conformally flat immersion iff f is a branched channel hypersurface.

For the three-dimensional case, we first prove that all three-dimensional branched channel hypersurfaces are
conformally flat and give explicit examples of three-dimensional conformally flat Lorentzian hypersurfaces which
are not branched channel, including hypersurfaces whose shape operator has complex eigenvalues or is non-diagonal
with one eigenvalue of multiplicity 2. We also study in more detail the so-called generic hypersurfaces, i.e., those
whose shape operator is diagonalizable with three distinct real eigenvalues, or conjugate complex eigenvalues, or
non-diagonalizable with one eigenvalue of multiplicity 2 or 3. In any case, we prove that the conformal flatness
condition is equivalent to the conformal fundamental forms γi being closed. In particular this allows us to prove the
following theorem:

Theorem 1.2. If f : M3
1 → R̂4

1 is conformally flat then the umbilic distributions γi ± γ j = 0 are locally integrable.

Our results allow us to show the existence of special coordinate systems which, in the real and complex diagonal
cases, represent the analogue of Guichard’s nets.

This note is organized as follows. Section 2 contains the basic facts and Lorentzian definitions involving spherical
congruences S, their envelopes f and adapted f -frames for the strip ( f, S). In Section 3 we prove the Main Lemma
using adapted f -frames. Section 4 is dedicated to studying the branched channel Lorentzian hypersurfaces in R̂n+1

1
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for n ≥ 4. We prove Theorem 1.1 and in addition, we give explicit examples of three-dimensional Lorentzian
generic hypersurfaces in R̂4

1. Section 5 contains some results involving the local classification of the three-dimensional
conformally flat Lorentzian hypersurfaces in R̂4

1 and the proof of Theorem 1.2. Finally, in Appendix we establish the
principal computations involving the Cartan tensor and the condition for the Schouten tensor to be a Codazzi tensor.

2. Spherical congruences

The principal goal in this section is to set the definitions and basic facts needed for proving the Main Lemma. We
refer the reader to [8], where the second author studied the conformal geometry of Lorentzian surfaces, constructing
the foundations of Möbius geometry for such surfaces. The definitions here for Lorentzian manifolds with dimensions
greater than 2 are natural extensions.

Let Rn+3
2 be Rn+3 with the metric

〈Ev, Ew〉 = −v1w1 +

n+1∑
i=2

viwi + vn+2wn+3 + vn+3wn+2,

for Ev = (v1, . . . , vn+3), Ew = (w1, . . . , wn+3). We define a pseudo-orthonormal basis of Rn+3
2 , {e1, . . . , en+3}, as one

such that 〈ei , e j 〉 = ±δi j for 1 ≤ i, j ≤ n+1, with −1 for i = 1 and +1 otherwise, and en+2, en+3 ∈ {e1, . . . , en+1}
⊥

are null vectors with 〈en+2, en+3〉 = 1. We also define an orthonormal basis {v1, . . . vn} of a Lorentzian n-dimensional
space as one for which 〈v1, v1〉 = −1, 〈vi , v j 〉 = δi j , and 〈v1, v j 〉 = 0 for 2 ≤ i, j ≤ n.

Let RPn+2 denote the real projective space of lines passing through the origin in Rn+3, π the projection from
Rn+3

− {0} to RPn+2, Ln+2
1 = {v ∈ Rn+3

2 |〈v, v〉 = 0} the light cone. Then the projection of Ln+2
1 − {0} is

homeomorphic to a compact space called the conformal compactification of Rn+1
1 [11], and which we denote by

R̂n+1
1 .
Following [8], one finds that there exists a bijection between points in RPn+2 and quadrics and planes in Rn+1

1 .
More explicitly, spacelike points correspond to Lorentzian spheres and timelike planes, while the timelike points
correspond to hyperbolic spaces and spacelike planes. Moreover, the Lorentzian spheres in Rn+1

1 correspond to points
in RPn+2

+ , the projectivized spacelike points, while hyperbolic spaces correspond to points in RPn+2
− , the projectivized

timelike points. Finally, points in Rn+1
1 or Sn+1

1 or Hn+1
1 are identified with points in R̂n+1

1 = RPn+2
0 , the projectivized

light cone in RPn+2 induced from Rn+3
2 .

For the Lorentzian case, the natural extensions of sphere congruence and its envelopes are given by the following
definitions:

Definition 2.1 ([8]). A differential n-parameter family of spheres S : Mn
1 → RPn+2

+ is called a spherical congruence.
It corresponds to a family of Lorentzian spheres in Rn+1

1 .

Definition 2.2 ([8]). A differential map f : Mn
1 → R̂n+1

1 is called an envelope for the spherical congruence S if, for
all p ∈ Mn

1 , f (p) ∈ S(p) and T f (p) f (Mn
1 ) ⊂ T f (p)S(p).

A equivalent condition for being an envelope for a spherical congruence is given by the next lemma.

Lemma 2.1 ([8]). A differential map f : Mn
1 → R̂n+1

1 envelopes a spherical congruence S : Mn
1 → RPn+2

+ if and
only if

〈 f, S〉 = 0 and 〈d f, S〉 = 0.

By rescaling one can assume that S takes values in Sn+2
2 , i.e., S : Mn

1 → Sn+2
2 where the images are the unit

spacelike vectors.
Finally, by analogy to the positive definite case, one can define a strip and an adapted frame, as follows.

Definition 2.3. A pair of smooth maps ( f, S) : Mn
1 → Ln+2

1 × Sn+2
2 , where f is an immersion and S is a spherical

congruence enveloped by f , is called a strip.
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Definition 2.4. Let ( f, S) : Mn
1 → Ln+2

1 × Sn+2
2 be a strip and {ei }

n+3
i=1 a pseudo-orthonormal basis of Rn+3

2 . A map
F : Mn

1 → O2(n + 3) such that S = Fen+1, f = Fen+2 and such that, for all p ∈ Mn
1 , span{Fe1, . . . , Fen}p

= d f p(Tp Mn
1 ) is called an f -adapted frame for the strip ( f, S).

We note that any eu f , for some smooth function u on Mn
1 , gives a conformally equivalent immersion.

Now we are ready to prove the Main Lemma.

3. Main Lemma’s proof using f -adapted frames

In this section we prove the Main Lemma using an f -frame adapted for the strip ( f, S) where f represents the
immersion f : Mn

1 → Ln+2
1 and S, a spherical congruence enveloped by f . Since, in the indefinite setting, the shape

operator AS can have four different forms depending on the algebraic type, we must consider all these cases.

Proof of the Main Lemma. Let f : Mn
1 → Ln+2

1 ⊂ Rn+3
2 be a representative of the immersion into R̂n+1

1 and
S : Mn

1 → Sn+2
2 ⊂ Rn+3

2 be a spherical congruence enveloped by f . Now let F be a f -adapted pseudo-orthonormal
framing for the strip ( f, S), given by

F = (S1, . . . , Sn, S, f, f̂ ) : Mn
1 → O2(n + 3)

with span{S1, . . . , Sn}p = d f p(Tp Mn
1 ) for all p ∈ Mn

1 . In particular Si = Fei , i = 1, . . . , n, S = Fen+1, f =

Fen+2, and f̂ := Fen+3. Moreover, {S1 . . . , Sn} forms an orthonormal set with 〈S1, S1〉 = −1, with f and f̂ are null
vectors such that 〈 f, f̂ 〉 = 1.

As usual d FeB =
∑

A ωAB FeA. Then the connection form Φ = F−1dF : T M → o2(n + 3) is given by

Φ =

(
ω η

−η∗ ν

)
=

(
ω η

−J ′ηt I1,n−1 ν

)
where J ′

=

(
1 0 0
0 0 1
0 1 0

)
,

ω =


0 ω12 ω13 . . . ω1,n−1 ω1n
ω12 0 ω23 . . . ω2,n−1 ω2n
ω13 −ω23 0 . . . ω3,n−1 ω3n
...

... . . .
...

...
...

ω1n −ω2n −ω3n . . . −ωn−1,n 0

 : T M → o1(n)

η =


−ψ1 −w1 −ζ1
ψ2 w2 ζ2
...

...
...

ψn wn ζn

 : T M →M(n × 3) and ν =

 0 0 v

−v 0 0
0 0 0

 : T M → o1(3).

We observe that, since 〈S, d f 〉 = 0 and 〈d f, f̂ 〉 = 0, one obtains ωn+1,n+2 = 0 = ωn+3,n+1 and ωn+2,n+2 = 0
= ωn+3,n+3. We write

d f = dFen+2 = ω1,n+2S1 + · · · + ωn,n+2Sn = −w1S1 + · · · + wn Sn .

Then the first and second fundamental forms are given by

I = −w2
1 + w2

2 + · · · + w2
n

II = −

(
−w1ψ1 +

n∑
2

wiψi

)
S −

(
−w1ζ1 +

n∑
2

wiζi

)
f −

(
−w2

1 +

n∑
2

w2
i

)
f̂ .

From now on we let τ1 = −1 and τi = 1 for 2 ≤ i ≤ n.
The integrability conditions for the existence of such a frame F , the Maurer–Cartan equations dΦ +

1
2 [Φ ∧Φ] = 0,

are the Gauss–Codazzi–Ricci equations for the immersion f , namely:
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The Ricci equation: dν = η∗
∧ η, i.e.,

dv =

n∑
i

τi (ψi ∧ ζi )

0 =

n∑
1

τi (ψi ∧ wi )

0 =

n∑
1

τi (ζi ∧ wi ),

(1)

the Codazzi equation: dη = −(ω ∧ η + η ∧ v), which in components is

dψi +

∑
j

τiτ jωi j ∧ ψ j = wi ∧ v

dwi +

∑
j

τiτ jωi j ∧ w j = 0

dζi +

∑
j

τiτ jωi j ∧ ζ j = v ∧ ψi ,

(2)

and the Gauss equation ρ = η ∧ η∗ with the curvature form ρ = dω + ω ∧ ω:

ρi j := dωi j +

n∑
k=1

ωik ∧ ωk j = τi (ψi ∧ ψ j + wi ∧ ζ j + ζi ∧ w j ). (3)

Then it follows from the second and third Ricci equations that the second fundamental forms IIS = −w1ψ1
+
∑n

2 wiψi and II f̂ = −w1ζ1 +
∑n

2 wiζi , where S is being considered as a unit field normal to the immersion

f : Mn
1 → Rn+3

2 , are symmetric forms with respect to the Lorentzian metric. Now we are interested in studying the
shape operator in the S-direction AS .

Lemma 3.1 (Preliminary Lemma). If the shape operator has constant algebraic type and the eigenvalues have
constant multiplicities in a neighborhood of a point xo, then we can find a basis of vector fields in a neighborhood of
xo so that AS has one of the four standard forms.

Proof. We first look at the case where AS has one pair of conjugate complex eigenvalues in a neighborhood of xo.
Thus we assume it has the following form at the point:

AS =


ao bo

−bo ao
a1

.

.

an−2

 . (4)

Pick an orthonormal basis {u1, u2, . . . , un} at one point, so that the first vector is unit timelike. Extend this to a basis of
vector fields {ũ1, ũ2, . . . , ũn}. We consider these vector fields to be in the complexified tangent bundle T MC. Assume
that the eigenvalues are a ± ib, λ1, . . . λk . We note that the distinct real eigenspaces Tλi , Tλ j are orthogonal, and if
v1 + iv2 is a complex eigenvector for a + ib, then v1 and v2 are perpendicular to all Tλ j . For j = 1, . . . , k, by an abuse
of notation, assume u j ∈ Tλ j and set

t j = (A − (a + ib)I )(A − (a − ib)I )(A − λ1 I ) . . . ̂(A − λ j I ) . . . (A − λk I )ũ j ,

where the ˆ means the factor is omitted. At xo we see that t j is a non-zero multiple of u j , and so remains non-zero in
a neighborhood. Furthermore, note that At j = λ j t j and t j are real vector fields.

Next set t1 = t11 + it12 = (A − (a − ib)I )(A − λ1 I ) . . . (A − λk I )ũ1. We note that At11 = at11 − bt12 and
At12 = bt11 + at12. If we apply the Gram–Schmidt process to tn, tn−1, . . . , t3, t12, t11 we arrive at the desired basis of
vector fields, with the final one of length −1.
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We use essentially the same techniques for the multiplicity 2 case. We assume that at every point there is a basis of
the form {L1, L2, u3, . . . , un} with respect to which

AS =


ao ν

0 ao
a1

.

.

an−2

 ,

L1 and L2 are null, 〈L1, L2〉 = 1, 〈L i , e j 〉 = 0 and the ui ’s form an orthonormal set. We choose such a basis at one
point and extend it to a basis {L̃1, L̃2, ũ3, . . . , ũn} and assume that the eigenvalues are λ, λ1, . . . , λk , where λ is the
eigenvalue associated with the null eigenvector. For j = 3, . . . , n set

t j = (A − λI )2(A − λ1 I ) . . . ̂(A − λ j I ) . . . (A − λk I )ũ j .

Applying the Gram–Schmidt process to {tn, . . . , t3,
ũ1+ũ2√

2
,

ũ1−ũ2√
2

} to arrive at an orthonormal set {vn, . . . , v3, w2, w1}.

We see that {w1, w2} is an orthonormal basis of {Tλ1 ⊕ · · · ⊕ Tλk }
⊥ and that w2 − w1 is a null vector satisfying

(A − λI )(w2 − w1) 6= 0 at xo. Since (A − λI )2(w2 − w1) = 0 we see that (A − λI )(w2 − w1) is in Tλ and is a
null vector field. To fill out the basis of vector fields we choose a null vector in the span of {w1, w2} which is null and
whose inner product with (A − λI )(w2 − w1) is 1.

The diagonal case and the final non-diagonal case can be handled in a similar fashion. �

We note that the proof for the diagonalized case is the same as the positive definite one and start our analysis
assuming first that AS has one pair of conjugate complex eigenvalues, i.e., AS has the form (4) with respect
to an orthonormal basis {v1, v2, . . . , vn} of the tangent space at one point. Then we choose w1, . . . , wn so that
wi (v j ) = τiδi j . We can do this as follows: Assume that the orthonormal basis {u1, . . . , un} is dual to the original
choicew1, . . . , wn . Assume further that an orthogonal transformation B takes u j to v j , i.e., Bu j = v j . Let S∗

j = BS j .
Then d f (v j ) = d f (Bu j ) = B(d f (u j )) = B(S j ) = S∗

j , so the new basis is dual to the new w∗

1, . . . , w
∗
n .

On the other hand, since dS(X) = − f∗(AS(X))+ ∇
⊥

X S, it follows that for all i ,

−ψ1(vi )Fe1 + ψ2(vi )Fe2 + · · · + ψn(vi )Fen − v(vi )Fen+2

= w1(AS(vi ))Fe1 − w2(AS(vi ))Fe2 − · · · − wn(AS(vi ))Fen + ∇
⊥
vi

S. (5)

Thus we getψ1 = −aow1 + bow2,

ψ2 = −bow1 − aow2,

ψi = −ai−2wi , i = 3, . . . , n.
(6)

Now we assume the induced metric
∑

i τiw
2
i of the light cone representative f to be flat. Then the curvature

forms ρi j in the Gauss equation vanish. Hence if we assume ζi =
∑

bikwk , we get, from the Gauss equation
0 = τi (ψi ∧ ψ j + wi ∧ ζ j + ζi ∧ w j ),

a2
o + b2

o + b11 + b22 = 0
aoa j−2 + bi i + b j j = 0, i = 1, 2, j ≥ 3
−boa j−2 + b12 = 0, j ≥ 3
boa j−2 + b21 = 0, j ≥ 3
ai−2a j−2 + bi i + b j j = 0, 3 ≤ i 6= j ≤ n

bi j = 0 i 6= j, i, j 6= 1, 2.
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So we have b12 = boai for 1 ≤ i ≤ n − 2, and all ai are equal for 1 ≤ i ≤ n − 2, since bo 6= 0. Moreover, b11 = b22
and all bi i are equal for 3 ≤ i ≤ n. Call these common values a and b respectively. Thenζ1 = b11w1 + b12w2

ζ2 = −b12w1 + b11w2
ζi = bwi , i = 3, . . . , n.

(7)

Hence the second fundamental form with respect to f̂ has the same form as AS , and they commute. Now substituting
the values of ζi and ψi obtained above in the first Ricci equation, one gets that dv = 0, i.e., the normal bundle of f is
flat.

Now, we consider the case when the matrix AS has one eigenvalue of multiplicity 2, i.e.,

AS =


ν ± α −α

α ν ∓ α

a1
.

an−2


with respect to an orthonormal basis {v1, v2, . . . , vn} of the tangent space. Then we choose w1, . . . , wn such that
wi (v j ) = τiδi j . Next from AS we read AS(vi ), 1 ≤ i ≤ n, and use formula (5) to obtainψ1 = −(ν ± α)w1 − αw2,

ψ2 = αw1 − (ν ∓ α)w2,

ψi = −ai−2wi , i = 3, . . . , n.
(8)

Now assuming that the induced metric of the light cone representative f is flat, we get from the Gauss equation
that

ν2
+ b22 + b11 = 0

b1 j = 0 = b2 j , b j2 = 0 for j > 2
a j−2(ν ± α)+ b11 + b j j = 0 for j ≥ 3
αa j−2 + b12 = 0 for j ≥ 3
b jk = 0, for j, k > 2,
−αa j−2 + b21 = 0 for j ≥ 3
b j1 = 0, for j > 2
a j−2(ν ∓ α)+ b22 + b j j = 0 for j ≥ 3
ai−2a j−2 + bi i + b j j = 0, 3 ≤ i 6= j ≤ n.

So we conclude that b12 = −αa j−2, i.e., all ai are equal for i = 1, . . . , n − 2 because we assume α 6= 0. Call
the common value a. In addition, b21 = −b12 and ±2aα + b11 − b22 = 0. We also get that all b j j are equal for
j = 3, . . . , n. So,ζ1 = b11w1 + b12w2

ζ2 = −b12w1 + b22w2
ζi = bwi , i = 3, . . . , n.

(9)

But with those values of ζi and ψi the first Ricci equation gives us

dv = −ψ1 ∧ ζ1 + ψ2 ∧ ζ2 + · · · + ψn ∧ ζn = α(±2b12 ± 2aα)w1 ∧ w2 = 0

because the factor (±2b12 ± 2aα) = 0. Again, the normal bundle is flat.
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Finally, we consider the case when the matrix AS has one eigenvalue of multiplicity 3, i.e.,

AS =


ao 0 −c
0 ao c
c c ao

a1
.

an−3


with respect to an orthonormal basis {v1, v2, . . . , vn} of the tangent space. Then just as in the cases above, we choose
w1, . . . , wn so that wi (v j ) = τiδi j . Then from AS we read AS(vi ), 1 ≤ i ≤ n, and use formula (5) to obtain

ψ1 = −aow1 − cw3,

ψ2 = −aow2 − cw3,

ψ3 = cw1 − cw2 − aow3,

ψi = −ai−3wi , i = 4, . . . , n.

(10)

Assuming that the induced metric of the light cone representative f is flat, we get from the Gauss equation that
c = 0, so this case does not occur. �

4. Branched channel Lorentzian hypersurfaces

In this section we show Theorem 1.1 which represents a version of the Cartan theorem [3,5,6] for conformally flat
Lorentzian hypersurfaces in the projectivized light cone R̂n+1

1 when n ≥ 4. We begin with the natural extension of
branched channel hypersurface to the Lorentzian setting.

Definition 4.1. A regular map f : Mn
1 → R̂n+1

1 is called a branched channel hypersurface if it envelopes a spherical
congruence S with rank dS ≤ 1.

Before proving Theorem 1.1, we give some explicit examples: Since any two-dimensional pseudo-Riemannian
manifold is conformally flat (see [2]), the next two examples represent conformally flat Lorentzian immersions in R5

2:
Example 4.1 represents a branched channel surface in R̂3

1 whose second fundamental form AS has a null eigenvector,
and Example 4.2 represents a conformally flat surface with second fundamental form having complex eigenvalues,
which is not a branched channel hypersurface in R̂3

1.

Example 4.1. Here is an example with n = 2 and A2
S = 0, AS 6= 0. Let

f (x, y) =

(
x − y, x + y, y2,

1 − 4xy − y4

2
,

1 + 4xy + y4

2

)
.

This is essentially the B-scroll put into the Möbius context. We can let

S(x, y) = (−y,−y, 1, y2,−y2)

S1(x, y) =

(
−

√
1 + y2,−

(
y2√

1 + y2

)
,

y√
1 + y2

,
−x + y + y3√

1 + y2
,

x − y
(
1 + y2)√

1 + y2

)

S2(x, y) =

(
0,

1√
1 + y2

,
y√

1 + y2
,
−x − y − y3√

1 + y2
,

x + y + y3√
1 + y2

)
.

With this, the shape operator AS is 1
2(1+y2)

(
−1 −1
1 1

)
in terms of the basis {S1, S2}. This has the form 1

1+y2

(
0 1
0 0

)
with respect to a basis L1, L2 of null vectors.

Example 4.2. Here is an example with n = 2 and AS , with complex eigenvalues. Let

f (x, y) =

(
cos(x) cosh(y)

√
2

,−
sin(x) sinh(y)

√
2

,
cos(x) sinh(y)

√
2

,
1

√
2
,

cosh(y) sin(x)
√

2

)
.
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This is a version of the complex circle (cos(z), sin(z)). We can let

f̂ (x, y) =

(
−

cos(x) cosh(y)
√

2
,

sin(x) sinh(y)
√

2
,−

cos(x) sinh(y)
√

2
,

1
√

2
,−

cosh(y) sin(x)
√

2

)
S(x, y) = (sin(x) sinh(y), cos(x) cosh(y), cosh(y) sin(x), 0,− cos(x) sinh(y))
S1(x, y) = (− cosh(y) sin(x),− cos(x) sinh(y),− sin(x) sinh(y), 0, cos(x) cosh(y))
S2(x, y) = (cos(x) sinh(y),− cosh(y) sin(x), cos(x) cosh(y), 0, sin(x) sinh(y)).

With this choice, the shape operator AS is
(

0 −
√

2
√

2 0

)
in terms of the basis {S1, S2}.

Following [5] we can begin with timelike surfaces of constant Gaussian curvature and find examples of three-
dimensional conformally flat hypersurfaces in R̂4

1, whose shape operators are not diagonalizable, or whose shape
operator has complex eigenvalues.

Example 4.3. We begin with p : U ⊂ R2
1 → M3

1 (k), where the target space is either a sphere, plane or a hyperbolic
space, and the image of p has constant Gaussian curvature and is not umbilic. For the first two cases we use the metric
−dx2

1 + · · · + dx2
4 + 2dx5dx6. If k > 0, so that 〈p, p〉 = k, the mapping is given by

f : U × (0,∞) → R6
2 f (t, s, r) =

(
p(t, s),

1

r
√

2
,−

rk
√

2

)
f̂ (t, r, s) =

1
2k

(
p(t, s),−

1

r
√

2
,

rk
√

2

)
.

The normal vector S given in terms of the normal n to the image of p in the sphere is S(t, s, r) = (n, 0, 0).
When k = 0 we have

f : U × R → R6
2 f (x, y, t) =

(
p(x, y), t,

1
√

2
,−

1
√

2
(t2

+ 〈p, p〉)

)
.

The normal vector S given in terms of the normal n to the image of p is

S(t, s, r) = (n, 0, 0,−
√

2〈n, p〉).

For k < 0 we assume that the metric is −dx2
1 − dx2

2 + dx2
3 + · · · + dx2

6 and use

f : U × R → R6
2 f (x, y, t) = (p(x, y),

√
−k cos(t),

√
−k sin(t)).

The normal vector S given in terms of the normal n to the image of p is S(x, y, t) = (n, 0, 0).
As special cases we can take

f (x, y, t) = (cos(x) cosh(y), sin(x) cosh(y), sin(x) sinh(y),− cos(x) sinh(y), cos(t), sin(t)),

which has two complex eigenvalues and

f (u, v, t) =
1

√
2
((1 + c) sin(v), (1 + c) cos(v), (1 − c) sin(v), (1 − c) cos(v), 0, 0)

+
(u + cv)

√
2

(− cos(v), sin(v), cos(v), sin(v), 0, 0)

+

(
0, 0, 0, 0, cos

(
t

√
2c

)
√

2c, sin
(

t
√

2c

)
√

2c
)

whose shape operator is not diagonalizable.

The next result, for which we omit the proof, is analogous to the positive definite case, and shows that any branched
channel hypersurface, n ≥ 3, is conformally flat.

Proposition 4.1. If Mn
1 , n ≥ 3, is a branched channel hypersurface then Mn

1 is conformally flat.

Now we are interested in the converse of Proposition 4.1. For that we first establish the following lemma which
is essentially Lemma 1.8.17 of [6]. We present a proof for dimensions n ≥ 4 dealing with the two different types of
shape operators.



M.P. Dussan, M. Magid / Journal of Geometry and Physics 57 (2007) 2466–2482 2475

Lemma 4.1. A Lorentzian submanifold f : Mn
1 → Ln+2

1 , n ≥ 4, of the Lorentzian light cone defines a branched
channel hypersurface if and only if its shape operator AS with respect to some spacelike normal field S : Mn

1 → Sn+2
2

has rk AS ≤ 1.

Proof. If rank dS ≤ 1 then rank AS ≤ 1. For the converse we use the vector field version of the Codazzi equation for
f : Mn

1 → Rn+3
2 :

∇X (ASY )− AS(∇X Y )− A
∇

⊥
X SY = ∇Y (AS X)− AS(∇Y X)− A

∇
⊥
Y S X.

Here we have ∇
⊥

X S = −v(X) f and A
∇

⊥
X SY = −v(X)Y . We see from the structure equation that, for Y ∈ ker(AS),

dS(Y ) = −v(Y ) f.
If X and Y are vector fields in ker(AS) with 〈X, X〉 = ±1 and X ⊥ Y then, following [6], we have

dS(Y ) = −v(Y ) f = sgn(〈X, X〉)〈−v(Y )X, X〉 f

= sgn(〈X, X〉)〈AS(∇X Y )− v(X)Y − AS(∇Y X), X〉 f = 0.

If ker(AS) is non-degenerate at a point and has dimension greater than or equal to 2, then for every vector field Y
in the kernel, we can find the unit companion vector field X needed to show that dS(Y ) = 0.

On the other hand, if ker(AS) is degenerate at a point xo, we can find a vector field W so that ker(AS) = W ⊥ and
W (xo) is null. The kernel is then spanned by n−2 spacelike orthonormal vector fields and an additional vector field V .
We see that dS(V ) = 0 and if n−2 ≥ 2 then the same is true for the spacelike vectors, but the proof fails if n = 3. �

So, making a change of the enveloped sphere congruence S via S̃ = S + a f , with a being a function, one obtains
that a Lorentzian hypersurface in R̂n+1

1 , n ≥ 4, is a branched channel hypersurface if the Weingarten tensor field
AS with respect to any enveloped spherical congruence S has an eigenvalue of multiplicity n − 1. We note that this
definition makes sense for the non-diagonalizable AS as well.

Theorem 4.1. If f : Mn
1 → R̂n+1

1 , n ≥ 4, is a conformally flat immersion then f is a branched channel hypersurface
(i.e., AS has rank ≤ 1.)

Proof. Let F be an f -adapted frame of the flat lift of the conformally flat immersion in R̂n+1
1 , with connection form

Φ. As usual, we analyze the three possible cases for the shape operator in the direction of S:
In the complex case we have the following equations from before Section 3:

a2
o + b2

o + 2b11 = 0
aoa + b11 + b = 0
−boa + b12 = 0
boa + b21 = 0
a2

+ 2b = 0, if n ≥ 4
bi j = 0 i 6= j, i, j 6= 1, 2.

So we get Eqs. (7). Now we use Lemma 4.1, and change S to S̃ = S + a f . In this case, we see that the shape operator
in the S̃-direction A S̃ = AS − aI d , i.e., A S̃ = (ãi j )n×n has the components ã11 = ão = ã22, ã12 = b̃o = −ã21 and
ãi j = 0 for all i, j 6= 1, 2. But this means the equations are valid with ˜’s. Thus, for n ≥ 4 we get ã = 0 = b̃,
implying that b̃11 = 0 and finally that b̃0 = 0, which means that the case cannot occur.

Next we examine the case where the shape operator is not diagonalizable. Here we know from Section 3 that the
shape operator AS = (ai j )n×n has the components a11 = ν + α, a22 = ν − α, a12 = −α = −a21, ai i = a for i ≥ 3,
and all the others are zero. In this case we have the equations

ν2
+ b22 + b11 = 0

b1 j = 0 = b2 j , b j2 = 0 for j > 2
a(ν + α)+ b11 + b = 0
αa + b12 = 0
b jk = 0, for j, k > 2,
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−αa + b21 = 0
b j1 = 0, for j > 2
a(ν − α)+ b22 + b = 0
a2

+ 2b = 0 if n ≥ 4.

So we get (9). Using the same technique as in the complex case above, if n ≥ 4 then b̃ = 0, so that b̃11 = 0 = b̃22 = ν̃

and the shape operator in the S̃-direction A S̃ = (ãi j )n×n has the components ã11 = ã21 = α̃ = −ã12 = −ã22 and all
the others are zero. So we get that A S̃ has rank less than or equal to 1.

Finally, the real diagonalizable case follows in a similar fashion. �

So, putting together Theorem 4.1 and Proposition 4.1, we have proved Theorem 1.1.
On the other hand, we observe that Theorem 4.1 does not hold in dimension n = 3, since Example 4.3 above

represents three-dimensional conformally flat hypersurfaces in R̂4
1 which are not branched channel hypersurfaces,

being not diagonalizable or having two complex eigenvalues.

5. The three-dimensional case

In this section we are interested in studying the conformally flat Lorentzian hypersurfaces of dimension n = 3 in
R̂4

1. Some of the computations involved in this section are made in Appendix. Following [5,6], we define the Cartan
tensor as (see Appendix A.2)

B =

3∑
i=1

τi (ζi − σi )vi .

We know that B can be written as

B = −(tr AS)AS + A2
S +

1
4
((tr AS)

2
− tr A2

S)I d,

for all algebraic types of the shape operator AS . Studying the Cartan tensor and the condition that the Schouten tensor
is a Codazzi tensor (see Appendix A.3), namely

dσk −

∑
m
ωmk ∧ σm = 0,

we get the following result:

Theorem 5.1. An immersion f : M3
1 → L5

1 is conformally flat if and only if

d(−τiσi + τiζi )+

∑
j

ωi j ∧ (−τ jσ j + τ jζ j )− τiv ∧ ψi = 0. (11)

We observe that, just as in the positive definite case, we can define C = 2B + A2
S and our conformal metric is

c(X, Y ) = g(X,CY ). In each algebraic case C has the same form with respect to the same basis.
Next we identify the conformal fundamental forms of the three-dimensional generic hypersurfaces in R̂4

1 and prove,
for those, the following local theorem.

Theorem 5.2. f : M3
1 → R̂4

1 is conformally flat iff the conformal fundamental forms are closed.

For the proof we begin with the real case, i.e., we choose a frame which diagonalizes the Weingarten tensor field
AS of f with respect to S, that is, ψi = −aiwi . Because the proof is similar to the positive definite case, we simply
note that a hypersurface f : M3

1 → R̂4
1 with three distinct principal curvatures at all points is conformally flat if and

only if the 1-forms

γk :=


√

a1 − a2
√

a1 − a3ω1√
a1 − a2

√
a3 − a2ω2√

a1 − a3
√

a2 − a3ω3,

where ωi = τiwi , are closed. In this case the conformal metric can be recovered as −γ 2
1 + γ 2

2 + γ 2
3 .
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For the other three cases we will use ωi = τiwi in most of the equations. From now on we set bi = ζi − σi so that

B =

∑
i

τi bivi (12)

Using Eq. (11) we get the three coordinate equations, namely,

−db1 + ω12 ∧ b2 + ω13 ∧ b3 + v ∧ ψ1 = 0 (13)
db2 − ω12 ∧ b1 + ω23 ∧ b3 − v ∧ ψ2 = 0 (14)
db3 − ω13 ∧ b1 − ω23 ∧ b2 − v ∧ ψ3 = 0. (15)

Now consider the complex case. Using the three coordinate equations, the components bi of the Cartan tensor in
matrix form (26), Eqs. (6) and the first and second Codazzi equations (2), the coordinates equations reduce to

−2a1b0dω2 − 2b2
0dω1 + 2a0b0dω2 − d(a1b0) ∧ ω2 − d(b2

0) ∧ ω1 + d(a0b0) ∧ ω2 = 0. (16)

2a1b0dω1 − 2b2
0dω2 − 2a0b0dω1 + d(a1b0) ∧ ω1 − d(b2

0) ∧ ω2 − d(a0b0) ∧ ω1 = 0. (17)

(a2
0 + b2

0 − 2a0a1 + a2
1)dω3 + d(a2

0/2 + b2
0/2 − a0a1 + a2

1/2)ω3 = 0. (18)

Then using Eqs. (16)–(18), one has that the 1-forms

γ1 =

√
2ibo(a1 − ao)− 2b2

o(ω1 + iω2)

γ2 =

√
2ibo(a1 − ao)+ 2b2

o(ω1 − iω2)

γ3 =

√
a2

o + b2
o − 2a0a1 + a2

1(ω3)

are closed. Conversely, if γ1, γ2, γ3 above are closed it follows that Eqs. (16)–(18) hold. We observe that in this case

the conformal metric can be recovered as −
γ 2

1
2 +

γ 2
2
2 + γ 2

3 .

Next we look at the first non-diagonalizable case, i.e., that of multiplicity 2. Here we find

ψ1 = (ν + α)ω1 − αω2

ψ2 = −αω1 − (ν − α)ω2

ψ3 = −a1ω3,

and the components of the Cartan tensor B in matrix form are

b1 = (ν2/2 + αa1)ω1 − αa1ω2

b2 = −αa1ω1 + (αa1 − ν2/2)ω2

b3 = (ν2/2 − νa1)ω3.

So, substituting the 1-forms bi and using the first and second Codazzi equations (2), we obtain that the first two
equations become

d(α(ν − a1)) ∧ ω1 + d(α(a1 − ν)) ∧ ω2 + 2α(ν − a1)dω1 + 2α(a1 − ν)dω2 = 0,

implying that γ1 = γ2 =
√

2α(ν − a1)(ω1 − ω2) is a closed 1-form. In the same way the third equation gives

2(ν − a1)
2dω3 + d((ν − a1)

2) ∧ ω3 = 0,

or γ3 =

√
2(ν − a1)2ω3 is a closed 1-form. The converse also holds. In addition, we note that in this case the conformal

metric can be recovered as −γ 2
1 +

γ 2
3
2 .

Finally we look at the multiplicity 3 case. In the same way as before, we have

ψ1 = aoω1 − cω3

ψ2 = −aoω2 − cω3
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ψ3 = −cω1 − cω2 − a0ω3

b1 =

(
c2

+
a2

o

2

)
ω1 + c2ω2 − ca0ω3

b2 = c2ω1 +

(
c2

−
a2

o

2

)
ω2 − ca0ω3

b3 = −caoω1 − caoω2 −
a2

o

2
ω3.

We look at the three coordinate equations again. The first gives:

c2(dω1 + dω2)+
1
2

d(c2) ∧ (ω1 + ω2) = 0 (19)

or, equivalently, γ1 = c(ω1 + ω2) is a closed 1-form on M3
1 . The second equation gives the same result, while the

third yields nothing. So, putting this all together, we have finished the proof of Theorem 5.2.
We now begin the proof of Theorem 1.2. We note that the integrability of the distributions is clear in the other three

cases because if γ1 = dx1, γ2 = dx2 and we have a coordinate system {x1, x2, x3}, then γ1 + γ2 = 0 is spanned by
∂/∂x1 −∂/∂x2 and ∂/∂x3. We include more details in the complex case because the conformal fundamental forms are
complex and involve a more complicated form of integrability. We want to prove that if M3

1 is conformally flat then
the umbilic distributions γi ± γ j = 0 are locally integrable in the complex case. We prove first that γ1 + γ2 = 0 is an
integrable distribution and then that γ1 + γ3 = 0 is locally integrable, in the sense of Nirenberg [9,1].

We set
√

2ibo(a1 − ao)− 2b2
o = a + ib and c =

√
(ao − a1)2 + b2

o. Then we have

γ1 = (aω1 − bω2)+ i(bω1 + aω2)

γ2 = (bω1 + aω2)+ i(aω1 − bω2)

γ3 = cω3

and we know that

d(aω1 − bω2) = 0, d(aω2 + bω1) = 0, d(cω3) = 0. (20)

Thus we have coordinates x, y, z such that

aω1 − bω2 = dx, aω2 + bω1 = dy, cω3 = dz. (21)

γ1 + γ2 = 0 is equivalent to dx + dy = 0. Thus the distribution is spanned by {∂/∂x − ∂/∂y, ∂/∂z} which is a real
two-dimensional distribution. A basis for this distribution in the original eigenvectors is {(b − a)v1 + (a + b)v2, v3}.

Next we consider γ1 + γ3 = 0 which is {dx + idy + dz = 0}. A spanning set is given by {∂/∂x +

i∂/∂y, ∂/∂x − i∂/∂y − 2∂/∂z} in the complexified tangent bundle of M , TC. In the original basis it can be written
as {v1 + iv2, c(a − ib)(v1 − iv2) − 2(a2

+ b2)v3}. Call this span S. We can see easily that, in the terminology of
Apostolova [1], S is formally integrable, meaning that [S,S] ⊂ S, and, in addition, that S + S̄ is also formally
integrable. We can see easily that this second condition holds, because S + S̄ is spanned by v1, iv2 and v3, and so is
all of TC. Thus we have coordinates {z, y, t = (x − z)} so that our distribution is dual to dz + idy and dt , exactly as
one finds in [9]. The foliation associated to this system has leaves of the form C × R [12]. Finally, in a similar way
one can see that the other distributions, i.e., γ2 + γ3 = 0 and γi − γ j = 0, are locally integrable. So we have proved
Theorem 1.2.

5.1. Guichard’s nets

In the real, diagonalizable case and in the complex case just completed, the conformal fundamental forms give us
three coordinates on our surface.

Indeed, in the real case we obtain a canonical coordinate system (x, y, z) such that γ1 = dx, γ2 = dy and γ3 = dz,
just as happens in the positive definite case. In particular, (x, y, z) are curvature line orthogonal coordinates and the
coordinate surfaces x = c1, y = c2 and z = c3, where c1, c2, c3 are constants, constitute a triply orthogonal system.
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In addition, one can see that defining l1 = ‖
∂
∂x ‖, l2 = ‖

∂
∂y ‖ and l3 = ‖

∂
∂z ‖, one obtains that

∑3
i=1 l2

i = 0, which is
similar to the condition for a Guichard net in the positive definite case.

Now we turn to the complex version of Guichard’s nets. Looking at the real and imaginary parts of the complex
1-forms γi we saw that there are coordinates x, y, z on M satisfying (21). We will see that the vector fields associated
with the distributions {x + iy, z}, {x − iy, z}, and {x, y} are the triply orthogonal distributions for the complex case.

These distributions are spanned by {
∂
∂x + i ∂

∂y ,
∂
∂z }, {

∂
∂x − i ∂

∂y ,
∂
∂z } and {

∂
∂x ,

∂
∂y }. Their normal vectors are

eigenvectors for A. They can also be obtained by letting one of x − iy, x + iy, or z be constant.
To verify these claims, take the dual vector fields ∂

∂x ,
∂
∂y ,

∂
∂z for dx and dy and dz respectively. This means

ω1 =
a

a2 + b2 dx +
b

a2 + b2 dy, ω2 = −
b

a2 + b2 dx +
a

a2 + b2 dy, ω3 =
1√

(ao − a1)2 + b2
o

dz.

Equivalently we have

∂

∂x
=

a
a2 + b2 v1 −

b
a2 + b2 v2,

∂

∂y
=

b
a2 + b2 v1 +

a
a2 + b2 v2,

∂

∂z
= cv3.

Setting

l1 =
1

√
2(a + ib)

, l2 =
1

√
2(±i)(a − ib)

, l3 =
1
c
,

we have

I
(
∂

∂x
,
∂

∂x

)
=

b2
− a2

(a2 + b2)2
= l2

2 − l2
1 = −I

(
∂

∂y
,
∂

∂y

)
, I

(
∂

∂z
,
∂

∂z

)
=

1
c2 = l2

3 ,

I
(
∂

∂x
,
∂

∂y

)
= −

2ab
(a2 + b2)2

= −i(l2
1 + l2

2), I
(
∂

∂x
,
∂

∂z

)
= I

(
∂

∂y
,
∂

∂z

)
= 0.

Now taking the complex vector fields 1
√

2
( ∂
∂x − i ∂

∂y ),
1

√
2
( ∂
∂x + i ∂

∂y ), we see that the dual 1-forms are 1
√

2
(dx + idy)

and 1
√

2
(dx − idy) respectively, and these are orthogonal with lengths

I
(

1
√

2

(
∂

∂x
− i

∂

∂y

)
,

1
√

2

(
∂

∂x
− i

∂

∂y

))
= −2l2

1 , I
(

1
√

2

(
∂

∂x
+ i

∂

∂y

)
,

1
√

2

(
∂

∂x
+ i

∂

∂y

))
= 2l2

2 .

Now taking our orthonormal basis v1, v2, v3 where v1−iv2√
2
,
v1+iv2√

2
are eigenvectors of the shape operator AS with

eigenvalues ao + ibo, ao − ibo respectively, we have

1
√

2

(
∂

∂x
− i

∂

∂y

)
=

√
2l1

(
v1 − iv2

√
2

)
,

1
√

2

(
∂

∂x
+ i

∂

∂y

)
= i

√
2l2

(
v1 + iv2

√
2

)
,

and so these are eigenvectors of AS . We have also

−2l2
1 + 2l2

2 − l2
3 = 0,

which is similar to the condition for a Guichard net in the positive definite case.
To finish this section we note from Theorem 5.2 that, in the non-diagonalizable case of multiplicity 2, the 1-forms

γ1 = γ2 =
√

2α(ν − a1)(ω1 − ω2) and γ3 =

√
2(ν − a1)2ω3, being closed, imply the existence of coordinates u, z

so that du =
√

2α(ν − a1)(ω1 − ω2) and dz =

√
2(ν − a1)2ω3. One can see that the surfaces given by u = constant

and by z = constant are perpendicular with normals given by v1 + v2 and v3. In similar way, in the multiplicity 3 case
one has that the 1-form γ1 = γ2 = c(ω1 + ω2), being closed, defines a single coordinate v so that dv = c(ω1 + ω2).
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Appendix. Weyl conformal tensor in an indefinite metric

A.1. Weyl and Schouten tensors

We begin by setting

ρi j = dωi j +

n∑
k=1

ωik ∧ ωk j ,

so that

R(X, vk)vi =

∑
j

τiτ jρi j (X, vk)v j .

Defining the Ricci tensor as Ric(X, Y ) = Tr{V → R(X, V )Y }, we have

Ric(X, Y ) =

n∑
k=1

g(R(X, vk)Y, vk)τk,

where {v1, . . . , vn} is our orthonormal basis. Then we let

ρi (X) = Ric(X, vi ) =

∑
j

τiτ jρi j (X, v j ). (22)

Hertrich-Jeromin [5] defines the Schouten tensor as

s(X, vi ) = σi (X) =
1

n − 2

(
ρi (X)−

ρ

2(n − 1)
g(X, vi )

)
=

1
n − 2

(
ρi (X)−

ρ

2(n − 1)
τiωi (X)

)
. (23)

The Weyl conformal tensor is defined as

W (X, Y, Z ,W ) = R(X, Y, Z ,W )− (s(X, Z)g(Y,W )− s(X,W )g(Y, Z)+ g(X, Z)s(Y,W )

− g(X,W )s(Y, Z)).

Letting Z = vi and W = v j we get

W (X, Y, vi , v j ) = ηi j (X, Y ) = ρi j (X, Y )τi − (σi ∧ τ jω j + τiωi ∧ σ j )(X, Y ).

Thus, if the Weyl tensor vanishes we have

ψi ∧ ψ j + wi ∧ (ζ j − σ j )+ (ζi − σi ) ∧ w j = 0.

With these definitions we can prove the Weyl–Schouten Theorem in the indefinite setting [2]:

Theorem A.1. An indefinite Riemannian manifold (Mn, g) of dimension n ≥ 3 is conformally flat iff:

1. the Schouten tensor is a Codazzi tensor ∇X s(Y, Z) = ∇Y s(X, Z) for n = 3;
2. the Weyl tensor vanishes if n > 3.

A.2. The Cartan tensor

Now we are considering only n = 3. Following [5] (up to the sign and τ j ), we set

B =

3∑
i=1

τi (ζi − σi )vi . (24)
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Lemma A.1. For all algebraic types we have

B = −(tr AS)AS + A2
S +

1
4
((tr AS)

2
− tr A2

S)I d. (25)

In each case we use the formulas for ψi and ζi to calculate ρi , ρ and σi . Using these values we can verify the form
of B. We present the calculation for the complex case; the others are similar. In fact, in the complex case we will see
that B has the matrix form above, i.e.,

B =


−

a2
o + b2

o

2
−a1bo

a1bo −
a2

o + b2
o

2
a2

o + b2
o

2
− aoa1

 . (26)

Using formulas (6) and (7) for ψi and ζi , we have ρ1(v1) = −(a2
o + b2

o + 3b11 + aoa1 + b), ρ2(v2) = a2
o + b2

o
+ 3b11 + aoa1 + b, ρ3(v3) = 2(b11 + aoa1 + b). So,

ρ/4 = (1/4)(−ρ1(v1)+ ρ2(v2)+ ρ3(v3)) =
a2

o + b2
o

2
+ 2b11 + aoa1 + b.

Hence

σ1(v1) = ρ1(v1)+ ρ/4 = −(a2
o + b2

o)/2 − b11

σ2(v2) = ρ2(v2)− ρ/4 = (a2
o + b2

o)/2 + b11

σ3(v3) = ρ3(v3)− ρ/4 = −(a2
o + b2

o)/2 + aoa1 + b.

σ2(v1) = ρ2(v1) = σ1(v2) = ρ1(v2) = b12 − a1bo.

σ3(v1) = ρ3(v1) = σ1(v3) = ρ1(v3) = 0.
σ2(v3) = ρ2(v3) = σ3(v2) = ρ3(v2) = 0.

Using these values, we can see that B(v j ) =
∑3

i=1 τi (−σi (v j )+ ζi (v j ))vi has the correct form.

A.3. Equivalent condition for the Schouten tensor to be Codazzi

Next we would like to look at the condition for the Schouten tensor to be a Codazzi tensor, in other words, for

∇X (s(Y, Z))− s(∇X Y, Z)− s(Y,∇X Z) = ∇Y (s(X, Z))− s(∇Y X, Z)− s(X,∇Y Z).

Using the notation above this is

dσk −

∑
m
ωmk ∧ σm = 0. (27)

On the other hand, we also have dτkζk =
∑n

m=1 τkωmk ∧ ζm + τkv∧ψk . Hence, assuming that the Schouten tensor
is a Codazzi tensor, we see that

∇X (BY )− B(∇X Y )− ∇Y (B X)+ B(∇Y X) =

∑
i

τi (v ∧ ψi )(X, Y )vi .

It follows that the Schouten tensor is a Codazzi tensor if and only if

d(−τiσi + τiζi )+

∑
j

ωi j ∧ (−τ jσ j + τ jζ j )− τiv ∧ ψi = 0. (28)
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